公 中 受 阀 门 "

ZHONGGUAN VALVE

ZHONGGUAN VALVE

PROFESSIONAL

CONCENTRIC BUTTERFLY VALVES

MANUFACTURER

TIANJIN FACTORY: TIANJIN ZHONGGUAN VALVE MANUFACTURE CO., LTD. 2-7 Tushan Road, Xiditou Village, Xiditou Town, Beichen District, Tianjin City, China.

WENZHOU FACTORY: ZHEJIANG ZHONGGUAN VALVE MANUFACTURE CO., LTD. No. 838 Oubei Avenue, Oubei Town, Yongjia County, Zhejiang Province, China.

Tel: +86 577 67179909 E-mail: info@zhongguanvalve.com

Website: www.zhongguanvalve.com

PROFESSIONAL CONCENTRIC BUTTERFLY VALVES MANUFACTURER

Company Profile

FOCUSING ON WATER SYSTEM VALVES

3000^{m2} Floor Area

20^{+Years} Deep Ploughing

The founding team of ZHONGGUAN originated in Wenzhou, Zhejiang, the hometown of pumps and valves, and has been engaged in the valve industry for more than 20 years. After years of stable development, Tianjin Zhongguan Valve Manufacture Co., Ltd. was established in 2016, specializing in the production of various centerline soft seal butterfly valves. In the first three-year development plan, ZHONGGUAN achieved product research and large-scale production, laying a solid foundation for the supply of quality and quantity. In the development of the second three-year plan, Zhongguan expanded its production scale and established a production workshop in Oubei, Zhejiang, achieving efficient logistics nationwide.

www.zhongguanvalve.com

OUR HONOR

R

30+ Obtained Various Authoritative Certifications

ISO4500: 2018

High Tech Enterprises Patent Certification

Our Strengths

Automation

Excellent craftsmanship and equipment, closely following the forefront of product design in the industry.

Digitization

Having an independent design team, we can provide personalized solutions for customers according to different application scenarios.

Applications

Including but not limited to the below application areas

Blockization

We have production bases in Tianjin and Zhejiang to achieve blockchain production according to demand.

WINNING CUSTOMERS WITH QUALITY BUILDING BRANDS WITH SERVICE

Q

Becoming the preferred supplier for customers

We strictly control the quality, with a low on-site failure rate and good customer feedback. Our R&D team is actively exploring in the field of valves, combining different application scenarios to provide sustainable and effective solutions.

Tianjin & Zhejiang

Dual synchronous production, stable production capacity, and efficient logistics.-Timely provision of reliable products that meet customer needs is a fundamental principle of Zhongguan.

Material	Features	Application		Material	Features
DI	Good mechanical properties, good corrosion resistance, high strength.	Commonly used in butterfly valves for general industrial applications, such as water supply and drainage systems.		PEEK Lined	High temperature resistance, che resistance, high mechanical stren insulation performance.
WCB	High strength, good wear resistance, good weldability.	Suitable for butterfly valves in general industrial applications, such as in the petroleum and chemical industries.		Halar Lined	Chemical corrosion resistance, al resistance, good insulation perfo
C95800	Good corrosion resistance, good abrasion resistance, good thermal conductivity.	Commonly used in butterfly valves for marine engineering, shipbuilding, and other applications requiring corrosion resistance.		Nylon(11) polyurethane	Wear resistance, impact resistan mechanical strength.
CF8M/304	Good corrosion resistance, stable mechanical properties, easy to process.	Suitable for butterfly valves in general industrial applications, such as in the food and pharmaceutical industries.		Nickel aluminum bronze	Resistance to seawater corrosio mechanical strength, wear resist
CF3M/316L	Good corrosion resistance, good oxidation resistance, high strength.	Suitable for applications requiring high requirements on the medium, such as in chemical, biopharmaceutical, and other industries.		® Wrapped PTFE board	Chemical corrosion resistance, lo coefficient, good sealing perforr
Duplex SS	Good corrosion resistance, high strength, good stress corrosion resistance.	Suitable for applications requiring high strength and corrosion resistance, such as in marine engineering, chemical, and other industries.		Nodular iron nickel plating	Good mechanical properties, we resistance, corrosion resistance.
Austenitic stainless steel (1.4529)	Good corrosion resistance, good high- temperature resistance, good oxidation resistance.	Commonly used in butterfly valves for high-temperature and strong corrosive media, such as in the chemical and petroleum industries.	נאוסי	Duplex SS SS(304/316)	Duplex SS :Corrosion resistance, strength, good stress corrosion SS304/SS316:good mechanical p

SS

Polishing

THE DISC SELECTION

Application

High temperature resistance, chemical corrosion resistance, high mechanical strength, good insulation performance.	Suitable for valves in high temperature, high pressure, and strong corrosive environments, such as in the chemical and petroleum industries.
Chemical corrosion resistance, abrasion resistance, good insulation performance.	Used in environments requiring resistance to strong chemical corrosion, such as in the chemical and electroplating industries.
Wear resistance, impact resistance, high mechanical strength.	Suitable for valves in general industrial applications, such as in water supply and drainage systems.
Resistance to seawater corrosion, high mechanical strength, wear resistance.	Commonly used in marine engineering and shipbuilding where corrosion resistance is required.
Chemical corrosion resistance, low friction coefficient, good sealing performance.	Suitable for applications requiring strict requirements on the medium, such as in the food and pharmaceutical industries.
Good mechanical properties, wear resistance, corrosion resistance.	Valves in general industrial applications, such as in water supply and gas systems.
Duplex SS :Corrosion resistance, high strength, good stress corrosion resistance. SS304/SS316:good mechanical properties	Duplex SS: requiring high strength and corrosion resistance, such as in the chemical and marine engineering industries. SS304/SS316:general industrial applications.
Beautiful appearance, smooth surface, easy to clean.	Suitable for applications requiring high appearance requirements, such as sanitary valves.

(1) EPDM

(-29°C to 121°C), 65-75 Shore

Ethylene Propylene Diene Monomer seats have a higher resistance to abrasion, lower compression set, and higher temperature capabilities than sulfur cured seats, it is also the most widely used and economical seat material. According to extra requirements, It not only meets FDA food grade requirements, but also has passed the German KTW-BWGL, French ACS, B [[]itish WRAS drinking water certification, and can also meet the US NSF-61/372 certification.

2 HTEPDM

(-29°C to 135°C), 65-75 Shore

HTEPDM is a proprietary rubber blend , increase the thermal FKM has some outstanding characteristics such as resistance properties of standard EPDM and is formulated to improved acid, oil, and temperature resistance over provide long term service at elevated temperatures for hot other seat materials. water. HTEPDM Food Grade seats are suitable for sanitary applications as well as standard industrial uses.

(3) BUNA-N

(-18°C to 100°C), 65-75 Shore

BUNA-N is the commonly used name for Nitrile synthetic rubber. Nitrile is a copolymer of acrylonitrile and butadiene. BUNA-N is sometimes referred to as NBR, Nitrile, or Hycar. BUNA-N is a general purpose seat material particularly suitable for hvdrocarbon service.

(4) FKM

(-18°C to 204°C), 70-78 Shore

(5) POLYURETHAN

(-29°C to 80°C), 65-75 Shore

Polyurethane seats are primarily used because of their resistance to abrasive wear. Polyurethane can be used in a reasonably broad range of services and will withstand severe impact, recover its original shape after distortion and resist abrasion better than other elastomers.

(6) NEOPRENE(CR)

(-18°C to 82°C), 75-83Shore

Neoprene is an all-purpose polymer with desirable HNBR is made via selective hydrogenation of the NBR characteristics including high resiliency with low butadiene groups which improves the temperature and compression, resistance to vegetable and animal oil, and ozone resistance considerably. HNBR is widely known flame resistance. This sealing material is excellent for for its physical strength and retention of properties refrigerants, ammonia and Freon, and is principally used in after long-term exposure to heat, oil, and chemicals. pulp and (non-bleached) paper lines. Neoprene is not HNBR has better heat resistance; oxidation resistance; recommended for strong oxidizing acids, chlorinated tensile strength and abrasion resistance than standard solvents, esters, ketones, aromatic hydrocarbons or nitrile (NBR). Also an excellent choice for automotive hydraulic fluids. White neoprene is generally used in refrigerant service. sanitary applications while the black grade provides better abrasion and oil resistance.

SEAT SELECTION ----

(7) CSM

(-20°C~ 120°C) , 65-75Shore

CSM(Chlorosulfonated polyethylene rubber) is an lestic polymer obtained by cholorination and sulfonation of polyethylene. Good ozone resistance, excellent aging, and better weather resistance than other rubbers. Flame retardant, heat resistance, solvent resistance, and resistance to most chemicals and acid and alkali resistance are good.

8 HNBR

(-40°C to 150°C), 50-90Shore

(9)XNBR

(-18°C to 121°C), 50-90Shore

HNBR is made via selective hydrogenation of the NBR butadiene groups which improves the temperature and ozone resistance considerably. HNBR is widely known for its physical strength and retention of properties after long-term exposure to heat, oil, and chemicals. HNBR has better heat resistance; oxidation resistance; tensile strength and abrasion resistance than standard nitrile (NBR). Also an excellent choice for automotive refrigerant service.

(-18°C to 85°C) 64~70Shore

Ultra-high-molecular-weight polyethylene (UHMWPE, UHMW), UHMWPE seats and discs feature exceptional chemical resistance and are the ideal choice for highly abrasive chemical applications. The natural ability of the UHMWPE's high molecular weight to repel solids prevents in-line particles from damaging the valve's seat surfaces.

(I) CONDUCTIVE PTFE

(-18°C to 204°C), 65~75Shore

conductive PTFE seats and discs are available for installation in areas of the plant where explosion protection is important. This material was designed to prevent harmful electrostatic discharge. it combined electrostatic discharge protection and the excellent chemical resistance properties of PTFE. The seat and the disc have a minimum conductive PTFE thickness of 1/8" (3 mm) which provides optimum protection against permeation of the line media.

12 VIRGIN PTFE= (-18°C to 204°C). 65~75Shore

PTFE has outstanding chemical resistance, a wide operating temperature range from cryogenic to 500F, resistance to weathering, high impact strength, electrical and thermal insulation, and self-lubricating properties. It is unsuitable for high-load applications and has a high thermal expansion, so it is generally not used for tight tolerance applications.

13PTFE +EPDM

(-29°C to 121°C), 65~75Shore

PTFE+EPDM Seat is a product of PTFE and EPDM combined by hot vulcanization. This product uses the elasticity of rubber to solve the leakage caused by the lack of elasticity of pure PTFE seals after repeated friction, as well as the high torque generated by pure PTFE. And reduce the cost of it.

(I)PTFE+HTEPDM

(-29°C to 150°C), 65~75Shore

PTFE lined HTEPDM seats consist of a PTFE liner which forms the flange sealing faces and the flow way of the seats which are molded on to HTEPDM elastomer backings. increase the thermal resistance properties of standard EPDM and is formulated to provide long term service at elevated temperatures.

(5)HPOLON

(-18°C to 80°C), 60~65Shore

Its chemical characteristics are oxidation resistance, resistance to creasing and cracking, abrasion resistance, weather resistance, UV/ozone resistance, heat resistance, chemical resistance, easy dyeing and stable color, and low water absorption

(6)SILICONE

(-50°C to120°C), 15-20Shore

Silicone rubber is favored for its high-temperature resistance and biocompatibility, making it wellsuited for medical and food-grade applications.

The above are typical features and applications of the product. If unusual situations occur (i.e. special applications: contact with specific liquids, abnormal pressure or temperature conditions, changes in elements that determine corrosion and wear, etc.), the metal properties may also change. Helping customers choose the right materials is the service tenet of our technical department.

Main Feature	Excellent weather and ozone resistance	High temperature resistance	Excellent oil and wear resistance	Exceptional chemical and heat resistance	High wear resistance and elasticity	Good oil and weather resistance	Excellent chemical and ozone resistance	High heat and oil resistance	Enhanced abrasion and tear resistance	Excellent wear and low friction	Outstanding chemical and low friction	Combined chemical resistance and	High temperature and chemical resistance	Antistatic and chemical resistance	Strong chemical and weather resistance	Excellent heat resistance and
Food																
Oils																
Alcohols																
Natural gas																
Steam																
Flue gas																
Air																
Srong base																
Weak Alkali																
Strong acid																
Weak acid																
Sea water																
Sewage																
Fresh Water																
Txture of Material	EPMD	HTEPDM	BUNA-N	FKM	POLYURETHAN	NEOPRENE	CSM	HNBR	XNBR	UHMWPE	PTFE	PTFE+EPDM	PTFE+HTEPDM	CONDUCTIVE PTFE	NOTOAYH	SILICONE

Material	Features	Application				
SS304	Moderate cost, good corrosion resistance	General use, corrosion resistance, temperature resistance				
SS316	Higher corrosion resistance, suitable for chemical and marine environments	Higher corrosion resistance, suitable for harsh environments				
SS416	Wear-resistant, suitable for high strength and hardness environments	High hardness, wear-resistant				
45# (45# Steel)	Economical, high strength	High strength requirement, common industrial applications				
14-4 PH Stainless Steel	High strength, good corrosion resistance	High strength, corrosion resistance, suitable for high-pressure environments				
Monel K-500	Excellent corrosion and wear resistance	Corrosion and wear resistance, suitable for chemical and marine environments				
Copper Alloy	Good rust prevention and thermal conductivity	Rust prevention, wear resistance, suitable for water treatment, low-pressure systems				
Duplex Steel	Extremely high corrosion resistance, suitable for marine and chemical environments	Corrosion resistance, suitable for seawater, chemical, and harsh environments				

PICTURE DISPLAY ---- 12

(1)

12

(13)

PICTURE DISPLAY - 14

NYLONG/PTFE CF8 DISC

ALUMINUM ALLOY BODY

PTFE + EPDM/HEPDM SEAT